Switch to go modules

This commit is contained in:
Calle Pettersson
2019-10-19 16:50:13 +02:00
committed by Calle Pettersson
parent de285e1043
commit 0d4f747f8f
616 changed files with 118192 additions and 59828 deletions

View File

@@ -1,192 +0,0 @@
package etwlogrus
import (
"fmt"
"reflect"
"github.com/Microsoft/go-winio/internal/etw"
"github.com/sirupsen/logrus"
)
// Hook is a Logrus hook which logs received events to ETW.
type Hook struct {
provider *etw.Provider
}
// NewHook registers a new ETW provider and returns a hook to log from it.
func NewHook(providerName string) (*Hook, error) {
hook := Hook{}
provider, err := etw.NewProvider(providerName, nil)
if err != nil {
return nil, err
}
hook.provider = provider
return &hook, nil
}
// Levels returns the set of levels that this hook wants to receive log entries
// for.
func (h *Hook) Levels() []logrus.Level {
return []logrus.Level{
logrus.TraceLevel,
logrus.DebugLevel,
logrus.InfoLevel,
logrus.WarnLevel,
logrus.ErrorLevel,
logrus.FatalLevel,
logrus.PanicLevel,
}
}
// Fire receives each Logrus entry as it is logged, and logs it to ETW.
func (h *Hook) Fire(e *logrus.Entry) error {
level := etw.Level(e.Level)
if !h.provider.IsEnabledForLevel(level) {
return nil
}
// Reserve extra space for the message field.
fields := make([]etw.FieldOpt, 0, len(e.Data)+1)
fields = append(fields, etw.StringField("Message", e.Message))
for k, v := range e.Data {
fields = append(fields, getFieldOpt(k, v))
}
// We could try to map Logrus levels to ETW levels, but we would lose some
// fidelity as there are fewer ETW levels. So instead we use the level
// directly.
return h.provider.WriteEvent(
"LogrusEntry",
etw.WithEventOpts(etw.WithLevel(level)),
fields)
}
// Currently, we support logging basic builtin types (int, string, etc), slices
// of basic builtin types, error, types derived from the basic types (e.g. "type
// foo int"), and structs (recursively logging their fields). We do not support
// slices of derived types (e.g. "[]foo").
//
// For types that we don't support, the value is formatted via fmt.Sprint, and
// we also log a message that the type is unsupported along with the formatted
// type. The intent of this is to make it easier to see which types are not
// supported in traces, so we can evaluate adding support for more types in the
// future.
func getFieldOpt(k string, v interface{}) etw.FieldOpt {
switch v := v.(type) {
case bool:
return etw.BoolField(k, v)
case []bool:
return etw.BoolArray(k, v)
case string:
return etw.StringField(k, v)
case []string:
return etw.StringArray(k, v)
case int:
return etw.IntField(k, v)
case []int:
return etw.IntArray(k, v)
case int8:
return etw.Int8Field(k, v)
case []int8:
return etw.Int8Array(k, v)
case int16:
return etw.Int16Field(k, v)
case []int16:
return etw.Int16Array(k, v)
case int32:
return etw.Int32Field(k, v)
case []int32:
return etw.Int32Array(k, v)
case int64:
return etw.Int64Field(k, v)
case []int64:
return etw.Int64Array(k, v)
case uint:
return etw.UintField(k, v)
case []uint:
return etw.UintArray(k, v)
case uint8:
return etw.Uint8Field(k, v)
case []uint8:
return etw.Uint8Array(k, v)
case uint16:
return etw.Uint16Field(k, v)
case []uint16:
return etw.Uint16Array(k, v)
case uint32:
return etw.Uint32Field(k, v)
case []uint32:
return etw.Uint32Array(k, v)
case uint64:
return etw.Uint64Field(k, v)
case []uint64:
return etw.Uint64Array(k, v)
case uintptr:
return etw.UintptrField(k, v)
case []uintptr:
return etw.UintptrArray(k, v)
case float32:
return etw.Float32Field(k, v)
case []float32:
return etw.Float32Array(k, v)
case float64:
return etw.Float64Field(k, v)
case []float64:
return etw.Float64Array(k, v)
case error:
return etw.StringField(k, v.Error())
default:
switch rv := reflect.ValueOf(v); rv.Kind() {
case reflect.Bool:
return getFieldOpt(k, rv.Bool())
case reflect.Int:
return getFieldOpt(k, int(rv.Int()))
case reflect.Int8:
return getFieldOpt(k, int8(rv.Int()))
case reflect.Int16:
return getFieldOpt(k, int16(rv.Int()))
case reflect.Int32:
return getFieldOpt(k, int32(rv.Int()))
case reflect.Int64:
return getFieldOpt(k, int64(rv.Int()))
case reflect.Uint:
return getFieldOpt(k, uint(rv.Uint()))
case reflect.Uint8:
return getFieldOpt(k, uint8(rv.Uint()))
case reflect.Uint16:
return getFieldOpt(k, uint16(rv.Uint()))
case reflect.Uint32:
return getFieldOpt(k, uint32(rv.Uint()))
case reflect.Uint64:
return getFieldOpt(k, uint64(rv.Uint()))
case reflect.Uintptr:
return getFieldOpt(k, uintptr(rv.Uint()))
case reflect.Float32:
return getFieldOpt(k, float32(rv.Float()))
case reflect.Float64:
return getFieldOpt(k, float64(rv.Float()))
case reflect.String:
return getFieldOpt(k, rv.String())
case reflect.Struct:
fields := make([]etw.FieldOpt, 0, rv.NumField())
for i := 0; i < rv.NumField(); i++ {
field := rv.Field(i)
if field.CanInterface() {
fields = append(fields, getFieldOpt(k, field.Interface()))
}
}
return etw.Struct(k, fields...)
}
}
return etw.StringField(k, fmt.Sprintf("(Unsupported: %T) %v", v, v))
}
// Close cleans up the hook and closes the ETW provider.
func (h *Hook) Close() error {
return h.provider.Close()
}

View File

@@ -1,126 +0,0 @@
package etwlogrus
import (
"github.com/Microsoft/go-winio/internal/etw"
"testing"
)
func fireEvent(t *testing.T, p *etw.Provider, name string, value interface{}) {
if err := p.WriteEvent(
name,
nil,
etw.WithFields(getFieldOpt("Field", value))); err != nil {
t.Fatal(err)
}
}
// The purpose of this test is to log lots of different field types, to test the
// logic that converts them to ETW. Because we don't have a way to
// programatically validate the ETW events, this test has two main purposes: (1)
// validate nothing causes a panic while logging (2) allow manual validation that
// the data is logged correctly (through a tool like WPA).
func TestFieldLogging(t *testing.T) {
// Sample WPRP to collect this provider:
//
// <?xml version="1.0"?>
// <WindowsPerformanceRecorder Version="1">
// <Profiles>
// <EventCollector Id="Collector" Name="MyCollector">
// <BufferSize Value="256"/>
// <Buffers Value="100"/>
// </EventCollector>
// <EventProvider Id="HookTest" Name="5e50de03-107c-5a83-74c6-998c4491e7e9"/>
// <Profile Id="Test.Verbose.File" Name="Test" Description="Test" LoggingMode="File" DetailLevel="Verbose">
// <Collectors>
// <EventCollectorId Value="Collector">
// <EventProviders>
// <EventProviderId Value="HookTest"/>
// </EventProviders>
// </EventCollectorId>
// </Collectors>
// </Profile>
// </Profiles>
// </WindowsPerformanceRecorder>
//
// Start collection:
// wpr -start HookTest.wprp -filemode
//
// Stop collection:
// wpr -stop HookTest.etl
p, err := etw.NewProvider("HookTest", nil)
if err != nil {
t.Fatal(err)
}
defer func() {
if err := p.Close(); err != nil {
t.Fatal(err)
}
}()
fireEvent(t, p, "Bool", true)
fireEvent(t, p, "BoolSlice", []bool{true, false, true})
fireEvent(t, p, "EmptyBoolSlice", []bool{})
fireEvent(t, p, "String", "teststring")
fireEvent(t, p, "StringSlice", []string{"sstr1", "sstr2", "sstr3"})
fireEvent(t, p, "EmptyStringSlice", []string{})
fireEvent(t, p, "Int", int(1))
fireEvent(t, p, "IntSlice", []int{2, 3, 4})
fireEvent(t, p, "EmptyIntSlice", []int{})
fireEvent(t, p, "Int8", int8(5))
fireEvent(t, p, "Int8Slice", []int8{6, 7, 8})
fireEvent(t, p, "EmptyInt8Slice", []int8{})
fireEvent(t, p, "Int16", int16(9))
fireEvent(t, p, "Int16Slice", []int16{10, 11, 12})
fireEvent(t, p, "EmptyInt16Slice", []int16{})
fireEvent(t, p, "Int32", int32(13))
fireEvent(t, p, "Int32Slice", []int32{14, 15, 16})
fireEvent(t, p, "EmptyInt32Slice", []int32{})
fireEvent(t, p, "Int64", int64(17))
fireEvent(t, p, "Int64Slice", []int64{18, 19, 20})
fireEvent(t, p, "EmptyInt64Slice", []int64{})
fireEvent(t, p, "Uint", uint(21))
fireEvent(t, p, "UintSlice", []uint{22, 23, 24})
fireEvent(t, p, "EmptyUintSlice", []uint{})
fireEvent(t, p, "Uint8", uint8(25))
fireEvent(t, p, "Uint8Slice", []uint8{26, 27, 28})
fireEvent(t, p, "EmptyUint8Slice", []uint8{})
fireEvent(t, p, "Uint16", uint16(29))
fireEvent(t, p, "Uint16Slice", []uint16{30, 31, 32})
fireEvent(t, p, "EmptyUint16Slice", []uint16{})
fireEvent(t, p, "Uint32", uint32(33))
fireEvent(t, p, "Uint32Slice", []uint32{34, 35, 36})
fireEvent(t, p, "EmptyUint32Slice", []uint32{})
fireEvent(t, p, "Uint64", uint64(37))
fireEvent(t, p, "Uint64Slice", []uint64{38, 39, 40})
fireEvent(t, p, "EmptyUint64Slice", []uint64{})
fireEvent(t, p, "Uintptr", uintptr(41))
fireEvent(t, p, "UintptrSlice", []uintptr{42, 43, 44})
fireEvent(t, p, "EmptyUintptrSlice", []uintptr{})
fireEvent(t, p, "Float32", float32(45.46))
fireEvent(t, p, "Float32Slice", []float32{47.48, 49.50, 51.52})
fireEvent(t, p, "EmptyFloat32Slice", []float32{})
fireEvent(t, p, "Float64", float64(53.54))
fireEvent(t, p, "Float64Slice", []float64{55.56, 57.58, 59.60})
fireEvent(t, p, "EmptyFloat64Slice", []float64{})
type struct1 struct {
A float32
priv int
B []uint
}
type struct2 struct {
A int
B int
}
type struct3 struct {
struct2
A int
B string
priv string
C struct1
D uint16
}
// Unexported fields, and fields in embedded structs, should not log.
fireEvent(t, p, "Struct", struct3{struct2{-1, -2}, 1, "2s", "-3s", struct1{3.4, -4, []uint{5, 6, 7}}, 8})
}

235
vendor/github.com/Microsoft/go-winio/pkg/guid/guid.go generated vendored Normal file
View File

@@ -0,0 +1,235 @@
// Package guid provides a GUID type. The backing structure for a GUID is
// identical to that used by the golang.org/x/sys/windows GUID type.
// There are two main binary encodings used for a GUID, the big-endian encoding,
// and the Windows (mixed-endian) encoding. See here for details:
// https://en.wikipedia.org/wiki/Universally_unique_identifier#Encoding
package guid
import (
"crypto/rand"
"crypto/sha1"
"encoding"
"encoding/binary"
"fmt"
"strconv"
"golang.org/x/sys/windows"
)
// Variant specifies which GUID variant (or "type") of the GUID. It determines
// how the entirety of the rest of the GUID is interpreted.
type Variant uint8
// The variants specified by RFC 4122.
const (
// VariantUnknown specifies a GUID variant which does not conform to one of
// the variant encodings specified in RFC 4122.
VariantUnknown Variant = iota
VariantNCS
VariantRFC4122
VariantMicrosoft
VariantFuture
)
// Version specifies how the bits in the GUID were generated. For instance, a
// version 4 GUID is randomly generated, and a version 5 is generated from the
// hash of an input string.
type Version uint8
var _ = (encoding.TextMarshaler)(GUID{})
var _ = (encoding.TextUnmarshaler)(&GUID{})
// GUID represents a GUID/UUID. It has the same structure as
// golang.org/x/sys/windows.GUID so that it can be used with functions expecting
// that type. It is defined as its own type so that stringification and
// marshaling can be supported. The representation matches that used by native
// Windows code.
type GUID windows.GUID
// NewV4 returns a new version 4 (pseudorandom) GUID, as defined by RFC 4122.
func NewV4() (GUID, error) {
var b [16]byte
if _, err := rand.Read(b[:]); err != nil {
return GUID{}, err
}
g := FromArray(b)
g.setVersion(4) // Version 4 means randomly generated.
g.setVariant(VariantRFC4122)
return g, nil
}
// NewV5 returns a new version 5 (generated from a string via SHA-1 hashing)
// GUID, as defined by RFC 4122. The RFC is unclear on the encoding of the name,
// and the sample code treats it as a series of bytes, so we do the same here.
//
// Some implementations, such as those found on Windows, treat the name as a
// big-endian UTF16 stream of bytes. If that is desired, the string can be
// encoded as such before being passed to this function.
func NewV5(namespace GUID, name []byte) (GUID, error) {
b := sha1.New()
namespaceBytes := namespace.ToArray()
b.Write(namespaceBytes[:])
b.Write(name)
a := [16]byte{}
copy(a[:], b.Sum(nil))
g := FromArray(a)
g.setVersion(5) // Version 5 means generated from a string.
g.setVariant(VariantRFC4122)
return g, nil
}
func fromArray(b [16]byte, order binary.ByteOrder) GUID {
var g GUID
g.Data1 = order.Uint32(b[0:4])
g.Data2 = order.Uint16(b[4:6])
g.Data3 = order.Uint16(b[6:8])
copy(g.Data4[:], b[8:16])
return g
}
func (g GUID) toArray(order binary.ByteOrder) [16]byte {
b := [16]byte{}
order.PutUint32(b[0:4], g.Data1)
order.PutUint16(b[4:6], g.Data2)
order.PutUint16(b[6:8], g.Data3)
copy(b[8:16], g.Data4[:])
return b
}
// FromArray constructs a GUID from a big-endian encoding array of 16 bytes.
func FromArray(b [16]byte) GUID {
return fromArray(b, binary.BigEndian)
}
// ToArray returns an array of 16 bytes representing the GUID in big-endian
// encoding.
func (g GUID) ToArray() [16]byte {
return g.toArray(binary.BigEndian)
}
// FromWindowsArray constructs a GUID from a Windows encoding array of bytes.
func FromWindowsArray(b [16]byte) GUID {
return fromArray(b, binary.LittleEndian)
}
// ToWindowsArray returns an array of 16 bytes representing the GUID in Windows
// encoding.
func (g GUID) ToWindowsArray() [16]byte {
return g.toArray(binary.LittleEndian)
}
func (g GUID) String() string {
return fmt.Sprintf(
"%08x-%04x-%04x-%04x-%012x",
g.Data1,
g.Data2,
g.Data3,
g.Data4[:2],
g.Data4[2:])
}
// FromString parses a string containing a GUID and returns the GUID. The only
// format currently supported is the `xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx`
// format.
func FromString(s string) (GUID, error) {
if len(s) != 36 {
return GUID{}, fmt.Errorf("invalid GUID %q", s)
}
if s[8] != '-' || s[13] != '-' || s[18] != '-' || s[23] != '-' {
return GUID{}, fmt.Errorf("invalid GUID %q", s)
}
var g GUID
data1, err := strconv.ParseUint(s[0:8], 16, 32)
if err != nil {
return GUID{}, fmt.Errorf("invalid GUID %q", s)
}
g.Data1 = uint32(data1)
data2, err := strconv.ParseUint(s[9:13], 16, 16)
if err != nil {
return GUID{}, fmt.Errorf("invalid GUID %q", s)
}
g.Data2 = uint16(data2)
data3, err := strconv.ParseUint(s[14:18], 16, 16)
if err != nil {
return GUID{}, fmt.Errorf("invalid GUID %q", s)
}
g.Data3 = uint16(data3)
for i, x := range []int{19, 21, 24, 26, 28, 30, 32, 34} {
v, err := strconv.ParseUint(s[x:x+2], 16, 8)
if err != nil {
return GUID{}, fmt.Errorf("invalid GUID %q", s)
}
g.Data4[i] = uint8(v)
}
return g, nil
}
func (g *GUID) setVariant(v Variant) {
d := g.Data4[0]
switch v {
case VariantNCS:
d = (d & 0x7f)
case VariantRFC4122:
d = (d & 0x3f) | 0x80
case VariantMicrosoft:
d = (d & 0x1f) | 0xc0
case VariantFuture:
d = (d & 0x0f) | 0xe0
case VariantUnknown:
fallthrough
default:
panic(fmt.Sprintf("invalid variant: %d", v))
}
g.Data4[0] = d
}
// Variant returns the GUID variant, as defined in RFC 4122.
func (g GUID) Variant() Variant {
b := g.Data4[0]
if b&0x80 == 0 {
return VariantNCS
} else if b&0xc0 == 0x80 {
return VariantRFC4122
} else if b&0xe0 == 0xc0 {
return VariantMicrosoft
} else if b&0xe0 == 0xe0 {
return VariantFuture
}
return VariantUnknown
}
func (g *GUID) setVersion(v Version) {
g.Data3 = (g.Data3 & 0x0fff) | (uint16(v) << 12)
}
// Version returns the GUID version, as defined in RFC 4122.
func (g GUID) Version() Version {
return Version((g.Data3 & 0xF000) >> 12)
}
// MarshalText returns the textual representation of the GUID.
func (g GUID) MarshalText() ([]byte, error) {
return []byte(g.String()), nil
}
// UnmarshalText takes the textual representation of a GUID, and unmarhals it
// into this GUID.
func (g *GUID) UnmarshalText(text []byte) error {
g2, err := FromString(string(text))
if err != nil {
return err
}
*g = g2
return nil
}