417 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
			
		
		
	
	
			417 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
| import * as fs from 'node:fs';
 | ||
| import * as crypto from 'node:crypto';
 | ||
| import { join } from 'node:path';
 | ||
| import * as stream from 'node:stream';
 | ||
| import * as util from 'node:util';
 | ||
| import { Inject, Injectable } from '@nestjs/common';
 | ||
| import { FSWatcher } from 'chokidar';
 | ||
| import { fileTypeFromFile } from 'file-type';
 | ||
| import FFmpeg from 'fluent-ffmpeg';
 | ||
| import isSvg from 'is-svg';
 | ||
| import probeImageSize from 'probe-image-size';
 | ||
| import { type predictionType } from 'nsfwjs';
 | ||
| import sharp from 'sharp';
 | ||
| import { encode } from 'blurhash';
 | ||
| import { createTempDir } from '@/misc/create-temp.js';
 | ||
| import { AiService } from '@/core/AiService.js';
 | ||
| import { bindThis } from '@/decorators.js';
 | ||
| 
 | ||
| const pipeline = util.promisify(stream.pipeline);
 | ||
| 
 | ||
| export type FileInfo = {
 | ||
| 	size: number;
 | ||
| 	md5: string;
 | ||
| 	type: {
 | ||
| 		mime: string;
 | ||
| 		ext: string | null;
 | ||
| 	};
 | ||
| 	width?: number;
 | ||
| 	height?: number;
 | ||
| 	orientation?: number;
 | ||
| 	blurhash?: string;
 | ||
| 	sensitive: boolean;
 | ||
| 	porn: boolean;
 | ||
| 	warnings: string[];
 | ||
| };
 | ||
| 
 | ||
| const TYPE_OCTET_STREAM = {
 | ||
| 	mime: 'application/octet-stream',
 | ||
| 	ext: null,
 | ||
| };
 | ||
| 
 | ||
| const TYPE_SVG = {
 | ||
| 	mime: 'image/svg+xml',
 | ||
| 	ext: 'svg',
 | ||
| };
 | ||
| 
 | ||
| @Injectable()
 | ||
| export class FileInfoService {
 | ||
| 	constructor(
 | ||
| 		private aiService: AiService,
 | ||
| 	) {
 | ||
| 	}
 | ||
| 
 | ||
| 	/**
 | ||
| 	 * Get file information
 | ||
| 	 */
 | ||
| 	@bindThis
 | ||
| 	public async getFileInfo(path: string, opts: {
 | ||
| 		skipSensitiveDetection: boolean;
 | ||
| 		sensitiveThreshold?: number;
 | ||
| 		sensitiveThresholdForPorn?: number;
 | ||
| 		enableSensitiveMediaDetectionForVideos?: boolean;
 | ||
| 	}): Promise<FileInfo> {
 | ||
| 		const warnings = [] as string[];
 | ||
| 
 | ||
| 		const size = await this.getFileSize(path);
 | ||
| 		const md5 = await this.calcHash(path);
 | ||
| 
 | ||
| 		let type = await this.detectType(path);
 | ||
| 
 | ||
| 		// image dimensions
 | ||
| 		let width: number | undefined;
 | ||
| 		let height: number | undefined;
 | ||
| 		let orientation: number | undefined;
 | ||
| 
 | ||
| 		if ([
 | ||
| 			'image/png',
 | ||
| 			'image/gif',
 | ||
| 			'image/jpeg',
 | ||
| 			'image/webp',
 | ||
| 			'image/avif',
 | ||
| 			'image/apng',
 | ||
| 			'image/bmp',
 | ||
| 			'image/tiff',
 | ||
| 			'image/svg+xml',
 | ||
| 			'image/vnd.adobe.photoshop',
 | ||
| 		].includes(type.mime)) {
 | ||
| 			const imageSize = await this.detectImageSize(path).catch(e => {
 | ||
| 				warnings.push(`detectImageSize failed: ${e}`);
 | ||
| 				return undefined;
 | ||
| 			});
 | ||
| 
 | ||
| 			// うまく判定できない画像は octet-stream にする
 | ||
| 			if (!imageSize) {
 | ||
| 				warnings.push('cannot detect image dimensions');
 | ||
| 				type = TYPE_OCTET_STREAM;
 | ||
| 			} else if (imageSize.wUnits === 'px') {
 | ||
| 				width = imageSize.width;
 | ||
| 				height = imageSize.height;
 | ||
| 				orientation = imageSize.orientation;
 | ||
| 
 | ||
| 				// 制限を超えている画像は octet-stream にする
 | ||
| 				if (imageSize.width > 16383 || imageSize.height > 16383) {
 | ||
| 					warnings.push('image dimensions exceeds limits');
 | ||
| 					type = TYPE_OCTET_STREAM;
 | ||
| 				}
 | ||
| 			} else {
 | ||
| 				warnings.push(`unsupported unit type: ${imageSize.wUnits}`);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		let blurhash: string | undefined;
 | ||
| 
 | ||
| 		if ([
 | ||
| 			'image/jpeg',
 | ||
| 			'image/gif',
 | ||
| 			'image/png',
 | ||
| 			'image/apng',
 | ||
| 			'image/webp',
 | ||
| 			'image/avif',
 | ||
| 			'image/svg+xml',
 | ||
| 		].includes(type.mime)) {
 | ||
| 			blurhash = await this.getBlurhash(path).catch(e => {
 | ||
| 				warnings.push(`getBlurhash failed: ${e}`);
 | ||
| 				return undefined;
 | ||
| 			});
 | ||
| 		}
 | ||
| 
 | ||
| 		let sensitive = false;
 | ||
| 		let porn = false;
 | ||
| 
 | ||
| 		if (!opts.skipSensitiveDetection) {
 | ||
| 			await this.detectSensitivity(
 | ||
| 				path,
 | ||
| 				type.mime,
 | ||
| 				opts.sensitiveThreshold ?? 0.5,
 | ||
| 				opts.sensitiveThresholdForPorn ?? 0.75,
 | ||
| 				opts.enableSensitiveMediaDetectionForVideos ?? false,
 | ||
| 			).then(value => {
 | ||
| 				[sensitive, porn] = value;
 | ||
| 			}, error => {
 | ||
| 				warnings.push(`detectSensitivity failed: ${error}`);
 | ||
| 			});
 | ||
| 		}
 | ||
| 
 | ||
| 		return {
 | ||
| 			size,
 | ||
| 			md5,
 | ||
| 			type,
 | ||
| 			width,
 | ||
| 			height,
 | ||
| 			orientation,
 | ||
| 			blurhash,
 | ||
| 			sensitive,
 | ||
| 			porn,
 | ||
| 			warnings,
 | ||
| 		};
 | ||
| 	}
 | ||
| 
 | ||
| 	@bindThis
 | ||
| 	private async detectSensitivity(source: string, mime: string, sensitiveThreshold: number, sensitiveThresholdForPorn: number, analyzeVideo: boolean): Promise<[sensitive: boolean, porn: boolean]> {
 | ||
| 		let sensitive = false;
 | ||
| 		let porn = false;
 | ||
| 	
 | ||
| 		function judgePrediction(result: readonly predictionType[]): [sensitive: boolean, porn: boolean] {
 | ||
| 			let sensitive = false;
 | ||
| 			let porn = false;
 | ||
| 	
 | ||
| 			if ((result.find(x => x.className === 'Sexy')?.probability ?? 0) > sensitiveThreshold) sensitive = true;
 | ||
| 			if ((result.find(x => x.className === 'Hentai')?.probability ?? 0) > sensitiveThreshold) sensitive = true;
 | ||
| 			if ((result.find(x => x.className === 'Porn')?.probability ?? 0) > sensitiveThreshold) sensitive = true;
 | ||
| 	
 | ||
| 			if ((result.find(x => x.className === 'Porn')?.probability ?? 0) > sensitiveThresholdForPorn) porn = true;
 | ||
| 	
 | ||
| 			return [sensitive, porn];
 | ||
| 		}
 | ||
| 	
 | ||
| 		if ([
 | ||
| 			'image/jpeg',
 | ||
| 			'image/png',
 | ||
| 			'image/webp',
 | ||
| 		].includes(mime)) {
 | ||
| 			const result = await this.aiService.detectSensitive(source);
 | ||
| 			if (result) {
 | ||
| 				[sensitive, porn] = judgePrediction(result);
 | ||
| 			}
 | ||
| 		} else if (analyzeVideo && (mime === 'image/apng' || mime.startsWith('video/'))) {
 | ||
| 			const [outDir, disposeOutDir] = await createTempDir();
 | ||
| 			try {
 | ||
| 				const command = FFmpeg()
 | ||
| 					.input(source)
 | ||
| 					.inputOptions([
 | ||
| 						'-skip_frame', 'nokey', // 可能ならキーフレームのみを取得してほしいとする(そうなるとは限らない)
 | ||
| 						'-lowres', '3', // 元の画質でデコードする必要はないので 1/8 画質でデコードしてもよいとする(そうなるとは限らない)
 | ||
| 					])
 | ||
| 					.noAudio()
 | ||
| 					.videoFilters([
 | ||
| 						{
 | ||
| 							filter: 'select', // フレームのフィルタリング
 | ||
| 							options: {
 | ||
| 								e: 'eq(pict_type,PICT_TYPE_I)', // I-Frame のみをフィルタする(VP9 とかはデコードしてみないとわからないっぽい)
 | ||
| 							},
 | ||
| 						},
 | ||
| 						{
 | ||
| 							filter: 'blackframe', // 暗いフレームの検出
 | ||
| 							options: {
 | ||
| 								amount: '0', // 暗さに関わらず全てのフレームで測定値を取る
 | ||
| 							},
 | ||
| 						},
 | ||
| 						{
 | ||
| 							filter: 'metadata',
 | ||
| 							options: {
 | ||
| 								mode: 'select', // フレーム選択モード
 | ||
| 								key: 'lavfi.blackframe.pblack', // フレームにおける暗部の百分率(前のフィルタからのメタデータを参照する)
 | ||
| 								value: '50',
 | ||
| 								function: 'less', // 50% 未満のフレームを選択する(50% 以上暗部があるフレームだと誤検知を招くかもしれないので)
 | ||
| 							},
 | ||
| 						},
 | ||
| 						{
 | ||
| 							filter: 'scale',
 | ||
| 							options: {
 | ||
| 								w: 299,
 | ||
| 								h: 299,
 | ||
| 							},
 | ||
| 						},
 | ||
| 					])
 | ||
| 					.format('image2')
 | ||
| 					.output(join(outDir, '%d.png'))
 | ||
| 					.outputOptions(['-vsync', '0']); // 可変フレームレートにすることで穴埋めをさせない
 | ||
| 				const results: ReturnType<typeof judgePrediction>[] = [];
 | ||
| 				let frameIndex = 0;
 | ||
| 				let targetIndex = 0;
 | ||
| 				let nextIndex = 1;
 | ||
| 				for await (const path of this.asyncIterateFrames(outDir, command)) {
 | ||
| 					try {
 | ||
| 						const index = frameIndex++;
 | ||
| 						if (index !== targetIndex) {
 | ||
| 							continue;
 | ||
| 						}
 | ||
| 						targetIndex = nextIndex;
 | ||
| 						nextIndex += index; // fibonacci sequence によってフレーム数制限を掛ける
 | ||
| 						const result = await this.aiService.detectSensitive(path);
 | ||
| 						if (result) {
 | ||
| 							results.push(judgePrediction(result));
 | ||
| 						}
 | ||
| 					} finally {
 | ||
| 						fs.promises.unlink(path);
 | ||
| 					}
 | ||
| 				}
 | ||
| 				sensitive = results.filter(x => x[0]).length >= Math.ceil(results.length * sensitiveThreshold);
 | ||
| 				porn = results.filter(x => x[1]).length >= Math.ceil(results.length * sensitiveThresholdForPorn);
 | ||
| 			} finally {
 | ||
| 				disposeOutDir();
 | ||
| 			}
 | ||
| 		}
 | ||
| 	
 | ||
| 		return [sensitive, porn];
 | ||
| 	}
 | ||
| 	
 | ||
| 	private async *asyncIterateFrames(cwd: string, command: FFmpeg.FfmpegCommand): AsyncGenerator<string, void> {
 | ||
| 		const watcher = new FSWatcher({
 | ||
| 			cwd,
 | ||
| 			disableGlobbing: true,
 | ||
| 		});
 | ||
| 		let finished = false;
 | ||
| 		command.once('end', () => {
 | ||
| 			finished = true;
 | ||
| 			watcher.close();
 | ||
| 		});
 | ||
| 		command.run();
 | ||
| 		for (let i = 1; true; i++) { // eslint-disable-line @typescript-eslint/no-unnecessary-condition
 | ||
| 			const current = `${i}.png`;
 | ||
| 			const next = `${i + 1}.png`;
 | ||
| 			const framePath = join(cwd, current);
 | ||
| 			if (await this.exists(join(cwd, next))) {
 | ||
| 				yield framePath;
 | ||
| 			} else if (!finished) { // eslint-disable-line @typescript-eslint/no-unnecessary-condition
 | ||
| 				watcher.add(next);
 | ||
| 				await new Promise<void>((resolve, reject) => {
 | ||
| 					watcher.on('add', function onAdd(path) {
 | ||
| 						if (path === next) { // 次フレームの書き出しが始まっているなら、現在フレームの書き出しは終わっている
 | ||
| 							watcher.unwatch(current);
 | ||
| 							watcher.off('add', onAdd);
 | ||
| 							resolve();
 | ||
| 						}
 | ||
| 					});
 | ||
| 					command.once('end', resolve); // 全てのフレームを処理し終わったなら、最終フレームである現在フレームの書き出しは終わっている
 | ||
| 					command.once('error', reject);
 | ||
| 				});
 | ||
| 				yield framePath;
 | ||
| 			} else if (await this.exists(framePath)) {
 | ||
| 				yield framePath;
 | ||
| 			} else {
 | ||
| 				return;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	
 | ||
| 	@bindThis
 | ||
| 	private exists(path: string): Promise<boolean> {
 | ||
| 		return fs.promises.access(path).then(() => true, () => false);
 | ||
| 	}
 | ||
| 
 | ||
| 	/**
 | ||
| 	 * Detect MIME Type and extension
 | ||
| 	 */
 | ||
| 	@bindThis
 | ||
| 	public async detectType(path: string): Promise<{
 | ||
| 	mime: string;
 | ||
| 	ext: string | null;
 | ||
| }> {
 | ||
| 	// Check 0 byte
 | ||
| 		const fileSize = await this.getFileSize(path);
 | ||
| 		if (fileSize === 0) {
 | ||
| 			return TYPE_OCTET_STREAM;
 | ||
| 		}
 | ||
| 
 | ||
| 		const type = await fileTypeFromFile(path);
 | ||
| 
 | ||
| 		if (type) {
 | ||
| 		// XMLはSVGかもしれない
 | ||
| 			if (type.mime === 'application/xml' && await this.checkSvg(path)) {
 | ||
| 				return TYPE_SVG;
 | ||
| 			}
 | ||
| 
 | ||
| 			return {
 | ||
| 				mime: type.mime,
 | ||
| 				ext: type.ext,
 | ||
| 			};
 | ||
| 		}
 | ||
| 
 | ||
| 		// 種類が不明でもSVGかもしれない
 | ||
| 		if (await this.checkSvg(path)) {
 | ||
| 			return TYPE_SVG;
 | ||
| 		}
 | ||
| 
 | ||
| 		// それでも種類が不明なら application/octet-stream にする
 | ||
| 		return TYPE_OCTET_STREAM;
 | ||
| 	}
 | ||
| 
 | ||
| 	/**
 | ||
| 	 * Check the file is SVG or not
 | ||
| 	 */
 | ||
| 	@bindThis
 | ||
| 	public async checkSvg(path: string) {
 | ||
| 		try {
 | ||
| 			const size = await this.getFileSize(path);
 | ||
| 			if (size > 1 * 1024 * 1024) return false;
 | ||
| 			return isSvg(fs.readFileSync(path));
 | ||
| 		} catch {
 | ||
| 			return false;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/**
 | ||
| 	 * Get file size
 | ||
| 	 */
 | ||
| 	@bindThis
 | ||
| 	public async getFileSize(path: string): Promise<number> {
 | ||
| 		const getStat = util.promisify(fs.stat);
 | ||
| 		return (await getStat(path)).size;
 | ||
| 	}
 | ||
| 
 | ||
| 	/**
 | ||
| 	 * Calculate MD5 hash
 | ||
| 	 */
 | ||
| 	@bindThis
 | ||
| 	private async calcHash(path: string): Promise<string> {
 | ||
| 		const hash = crypto.createHash('md5').setEncoding('hex');
 | ||
| 		await pipeline(fs.createReadStream(path), hash);
 | ||
| 		return hash.read();
 | ||
| 	}
 | ||
| 
 | ||
| 	/**
 | ||
| 	 * Detect dimensions of image
 | ||
| 	 */
 | ||
| 	@bindThis
 | ||
| 	private async detectImageSize(path: string): Promise<{
 | ||
| 	width: number;
 | ||
| 	height: number;
 | ||
| 	wUnits: string;
 | ||
| 	hUnits: string;
 | ||
| 	orientation?: number;
 | ||
| }> {
 | ||
| 		const readable = fs.createReadStream(path);
 | ||
| 		const imageSize = await probeImageSize(readable);
 | ||
| 		readable.destroy();
 | ||
| 		return imageSize;
 | ||
| 	}
 | ||
| 
 | ||
| 	/**
 | ||
| 	 * Calculate average color of image
 | ||
| 	 */
 | ||
| 	@bindThis
 | ||
| 	private getBlurhash(path: string): Promise<string> {
 | ||
| 		return new Promise((resolve, reject) => {
 | ||
| 			sharp(path)
 | ||
| 				.raw()
 | ||
| 				.ensureAlpha()
 | ||
| 				.resize(64, 64, { fit: 'inside' })
 | ||
| 				.toBuffer((err, buffer, info) => {
 | ||
| 					if (err) return reject(err);
 | ||
| 
 | ||
| 					let hash;
 | ||
| 
 | ||
| 					try {
 | ||
| 						hash = encode(new Uint8ClampedArray(buffer), info.width, info.height, 5, 5);
 | ||
| 					} catch (e) {
 | ||
| 						return reject(e);
 | ||
| 					}
 | ||
| 
 | ||
| 					resolve(hash);
 | ||
| 				});
 | ||
| 		});
 | ||
| 	}
 | ||
| }
 | 
