Rename
This commit is contained in:
51
src/tools/analysis/core.ts
Normal file
51
src/tools/analysis/core.ts
Normal file
@@ -0,0 +1,51 @@
|
||||
const bayes = require('./naive-bayes.js');
|
||||
const MeCab = require('mecab-async');
|
||||
|
||||
import Post from '../../api/models/post';
|
||||
import config from '../../conf';
|
||||
|
||||
/**
|
||||
* 投稿を学習したり与えられた投稿のカテゴリを予測します
|
||||
*/
|
||||
export default class Categorizer {
|
||||
private classifier: any;
|
||||
private mecab: any;
|
||||
|
||||
constructor() {
|
||||
this.mecab = new MeCab();
|
||||
if (config.categorizer.mecab_command) this.mecab.command = config.categorizer.mecab_command;
|
||||
|
||||
// BIND -----------------------------------
|
||||
this.tokenizer = this.tokenizer.bind(this);
|
||||
}
|
||||
|
||||
private tokenizer(text: string) {
|
||||
const tokens = this.mecab.parseSync(text)
|
||||
// 名詞だけに制限
|
||||
.filter(token => token[1] === '名詞')
|
||||
// 取り出し
|
||||
.map(token => token[0]);
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
public async init() {
|
||||
this.classifier = bayes({
|
||||
tokenizer: this.tokenizer
|
||||
});
|
||||
|
||||
// 訓練データ取得
|
||||
const verifiedPosts = await Post.find({
|
||||
is_category_verified: true
|
||||
});
|
||||
|
||||
// 学習
|
||||
verifiedPosts.forEach(post => {
|
||||
this.classifier.learn(post.text, post.category);
|
||||
});
|
||||
}
|
||||
|
||||
public async predict(text) {
|
||||
return this.classifier.categorize(text);
|
||||
}
|
||||
}
|
94
src/tools/analysis/extract-user-keywords.ts
Normal file
94
src/tools/analysis/extract-user-keywords.ts
Normal file
@@ -0,0 +1,94 @@
|
||||
const MeCab = require('mecab-async');
|
||||
|
||||
import Post from '../../api/models/post';
|
||||
import User from '../../api/models/user';
|
||||
import config from '../../conf';
|
||||
|
||||
const mecab = new MeCab();
|
||||
if (config.categorizer.mecab_command) mecab.command = config.categorizer.mecab_command;
|
||||
|
||||
function tokenize(text: string) {
|
||||
const tokens = this.mecab.parseSync(text)
|
||||
// キーワードのみ
|
||||
.filter(token => token[1] == '名詞' && (token[2] == '固有名詞' || token[2] == '一般'))
|
||||
// 取り出し
|
||||
.map(token => token[0]);
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
// Fetch all users
|
||||
User.find({}, {
|
||||
fields: {
|
||||
_id: true
|
||||
}
|
||||
}).then(users => {
|
||||
let i = -1;
|
||||
|
||||
const x = cb => {
|
||||
if (++i == users.length) return cb();
|
||||
extractKeywordsOne(users[i]._id, () => x(cb));
|
||||
};
|
||||
|
||||
x(() => {
|
||||
console.log('complete');
|
||||
});
|
||||
});
|
||||
|
||||
async function extractKeywordsOne(id, cb) {
|
||||
console.log(`extract keywords of ${id} ...`);
|
||||
|
||||
// Fetch recent posts
|
||||
const recentPosts = await Post.find({
|
||||
user_id: id,
|
||||
text: {
|
||||
$exists: true
|
||||
}
|
||||
}, {
|
||||
sort: {
|
||||
_id: -1
|
||||
},
|
||||
limit: 1000,
|
||||
fields: {
|
||||
_id: false,
|
||||
text: true
|
||||
}
|
||||
});
|
||||
|
||||
// 投稿が少なかったら中断
|
||||
if (recentPosts.length < 10) {
|
||||
return cb();
|
||||
}
|
||||
|
||||
const keywords = {};
|
||||
|
||||
// Extract keywords from recent posts
|
||||
recentPosts.forEach(post => {
|
||||
const keywordsOfPost = tokenize(post.text);
|
||||
|
||||
keywordsOfPost.forEach(keyword => {
|
||||
if (keywords[keyword]) {
|
||||
keywords[keyword]++;
|
||||
} else {
|
||||
keywords[keyword] = 1;
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
// Sort keywords by frequency
|
||||
const keywordsSorted = Object.keys(keywords).sort((a, b) => keywords[b] - keywords[a]);
|
||||
|
||||
// Lookup top 10 keywords
|
||||
const topKeywords = keywordsSorted.slice(0, 10);
|
||||
|
||||
process.stdout.write(' >>> ' + topKeywords.join(' '));
|
||||
|
||||
// Save
|
||||
User.update({ _id: id }, {
|
||||
$set: {
|
||||
keywords: topKeywords
|
||||
}
|
||||
}).then(() => {
|
||||
cb();
|
||||
});
|
||||
}
|
302
src/tools/analysis/naive-bayes.js
Normal file
302
src/tools/analysis/naive-bayes.js
Normal file
@@ -0,0 +1,302 @@
|
||||
// Original source code: https://github.com/ttezel/bayes/blob/master/lib/naive_bayes.js (commit: 2c20d3066e4fc786400aaedcf3e42987e52abe3c)
|
||||
// CUSTOMIZED BY SYUILO
|
||||
|
||||
/*
|
||||
Expose our naive-bayes generator function
|
||||
*/
|
||||
module.exports = function (options) {
|
||||
return new Naivebayes(options)
|
||||
}
|
||||
|
||||
// keys we use to serialize a classifier's state
|
||||
var STATE_KEYS = module.exports.STATE_KEYS = [
|
||||
'categories', 'docCount', 'totalDocuments', 'vocabulary', 'vocabularySize',
|
||||
'wordCount', 'wordFrequencyCount', 'options'
|
||||
];
|
||||
|
||||
/**
|
||||
* Initializes a NaiveBayes instance from a JSON state representation.
|
||||
* Use this with classifier.toJson().
|
||||
*
|
||||
* @param {String} jsonStr state representation obtained by classifier.toJson()
|
||||
* @return {NaiveBayes} Classifier
|
||||
*/
|
||||
module.exports.fromJson = function (jsonStr) {
|
||||
var parsed;
|
||||
try {
|
||||
parsed = JSON.parse(jsonStr)
|
||||
} catch (e) {
|
||||
throw new Error('Naivebayes.fromJson expects a valid JSON string.')
|
||||
}
|
||||
// init a new classifier
|
||||
var classifier = new Naivebayes(parsed.options)
|
||||
|
||||
// override the classifier's state
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
if (!parsed[k]) {
|
||||
throw new Error('Naivebayes.fromJson: JSON string is missing an expected property: `'+k+'`.')
|
||||
}
|
||||
classifier[k] = parsed[k]
|
||||
})
|
||||
|
||||
return classifier
|
||||
}
|
||||
|
||||
/**
|
||||
* Given an input string, tokenize it into an array of word tokens.
|
||||
* This is the default tokenization function used if user does not provide one in `options`.
|
||||
*
|
||||
* @param {String} text
|
||||
* @return {Array}
|
||||
*/
|
||||
var defaultTokenizer = function (text) {
|
||||
//remove punctuation from text - remove anything that isn't a word char or a space
|
||||
var rgxPunctuation = /[^(a-zA-ZA-Яa-я0-9_)+\s]/g
|
||||
|
||||
var sanitized = text.replace(rgxPunctuation, ' ')
|
||||
|
||||
return sanitized.split(/\s+/)
|
||||
}
|
||||
|
||||
/**
|
||||
* Naive-Bayes Classifier
|
||||
*
|
||||
* This is a naive-bayes classifier that uses Laplace Smoothing.
|
||||
*
|
||||
* Takes an (optional) options object containing:
|
||||
* - `tokenizer` => custom tokenization function
|
||||
*
|
||||
*/
|
||||
function Naivebayes (options) {
|
||||
// set options object
|
||||
this.options = {}
|
||||
if (typeof options !== 'undefined') {
|
||||
if (!options || typeof options !== 'object' || Array.isArray(options)) {
|
||||
throw TypeError('NaiveBayes got invalid `options`: `' + options + '`. Pass in an object.')
|
||||
}
|
||||
this.options = options
|
||||
}
|
||||
|
||||
this.tokenizer = this.options.tokenizer || defaultTokenizer
|
||||
|
||||
//initialize our vocabulary and its size
|
||||
this.vocabulary = {}
|
||||
this.vocabularySize = 0
|
||||
|
||||
//number of documents we have learned from
|
||||
this.totalDocuments = 0
|
||||
|
||||
//document frequency table for each of our categories
|
||||
//=> for each category, how often were documents mapped to it
|
||||
this.docCount = {}
|
||||
|
||||
//for each category, how many words total were mapped to it
|
||||
this.wordCount = {}
|
||||
|
||||
//word frequency table for each category
|
||||
//=> for each category, how frequent was a given word mapped to it
|
||||
this.wordFrequencyCount = {}
|
||||
|
||||
//hashmap of our category names
|
||||
this.categories = {}
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialize each of our data structure entries for this new category
|
||||
*
|
||||
* @param {String} categoryName
|
||||
*/
|
||||
Naivebayes.prototype.initializeCategory = function (categoryName) {
|
||||
if (!this.categories[categoryName]) {
|
||||
this.docCount[categoryName] = 0
|
||||
this.wordCount[categoryName] = 0
|
||||
this.wordFrequencyCount[categoryName] = {}
|
||||
this.categories[categoryName] = true
|
||||
}
|
||||
return this
|
||||
}
|
||||
|
||||
/**
|
||||
* train our naive-bayes classifier by telling it what `category`
|
||||
* the `text` corresponds to.
|
||||
*
|
||||
* @param {String} text
|
||||
* @param {String} class
|
||||
*/
|
||||
Naivebayes.prototype.learn = function (text, category) {
|
||||
var self = this
|
||||
|
||||
//initialize category data structures if we've never seen this category
|
||||
self.initializeCategory(category)
|
||||
|
||||
//update our count of how many documents mapped to this category
|
||||
self.docCount[category]++
|
||||
|
||||
//update the total number of documents we have learned from
|
||||
self.totalDocuments++
|
||||
|
||||
//normalize the text into a word array
|
||||
var tokens = self.tokenizer(text)
|
||||
|
||||
//get a frequency count for each token in the text
|
||||
var frequencyTable = self.frequencyTable(tokens)
|
||||
|
||||
/*
|
||||
Update our vocabulary and our word frequency count for this category
|
||||
*/
|
||||
|
||||
Object
|
||||
.keys(frequencyTable)
|
||||
.forEach(function (token) {
|
||||
//add this word to our vocabulary if not already existing
|
||||
if (!self.vocabulary[token]) {
|
||||
self.vocabulary[token] = true
|
||||
self.vocabularySize++
|
||||
}
|
||||
|
||||
var frequencyInText = frequencyTable[token]
|
||||
|
||||
//update the frequency information for this word in this category
|
||||
if (!self.wordFrequencyCount[category][token])
|
||||
self.wordFrequencyCount[category][token] = frequencyInText
|
||||
else
|
||||
self.wordFrequencyCount[category][token] += frequencyInText
|
||||
|
||||
//update the count of all words we have seen mapped to this category
|
||||
self.wordCount[category] += frequencyInText
|
||||
})
|
||||
|
||||
return self
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine what category `text` belongs to.
|
||||
*
|
||||
* @param {String} text
|
||||
* @return {String} category
|
||||
*/
|
||||
Naivebayes.prototype.categorize = function (text) {
|
||||
var self = this
|
||||
, maxProbability = -Infinity
|
||||
, chosenCategory = null
|
||||
|
||||
var tokens = self.tokenizer(text)
|
||||
var frequencyTable = self.frequencyTable(tokens)
|
||||
|
||||
//iterate thru our categories to find the one with max probability for this text
|
||||
Object
|
||||
.keys(self.categories)
|
||||
.forEach(function (category) {
|
||||
|
||||
//start by calculating the overall probability of this category
|
||||
//=> out of all documents we've ever looked at, how many were
|
||||
// mapped to this category
|
||||
var categoryProbability = self.docCount[category] / self.totalDocuments
|
||||
|
||||
//take the log to avoid underflow
|
||||
var logProbability = Math.log(categoryProbability)
|
||||
|
||||
//now determine P( w | c ) for each word `w` in the text
|
||||
Object
|
||||
.keys(frequencyTable)
|
||||
.forEach(function (token) {
|
||||
var frequencyInText = frequencyTable[token]
|
||||
var tokenProbability = self.tokenProbability(token, category)
|
||||
|
||||
// console.log('token: %s category: `%s` tokenProbability: %d', token, category, tokenProbability)
|
||||
|
||||
//determine the log of the P( w | c ) for this word
|
||||
logProbability += frequencyInText * Math.log(tokenProbability)
|
||||
})
|
||||
|
||||
if (logProbability > maxProbability) {
|
||||
maxProbability = logProbability
|
||||
chosenCategory = category
|
||||
}
|
||||
})
|
||||
|
||||
return chosenCategory
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate probability that a `token` belongs to a `category`
|
||||
*
|
||||
* @param {String} token
|
||||
* @param {String} category
|
||||
* @return {Number} probability
|
||||
*/
|
||||
Naivebayes.prototype.tokenProbability = function (token, category) {
|
||||
//how many times this word has occurred in documents mapped to this category
|
||||
var wordFrequencyCount = this.wordFrequencyCount[category][token] || 0
|
||||
|
||||
//what is the count of all words that have ever been mapped to this category
|
||||
var wordCount = this.wordCount[category]
|
||||
|
||||
//use laplace Add-1 Smoothing equation
|
||||
return ( wordFrequencyCount + 1 ) / ( wordCount + this.vocabularySize )
|
||||
}
|
||||
|
||||
/**
|
||||
* Build a frequency hashmap where
|
||||
* - the keys are the entries in `tokens`
|
||||
* - the values are the frequency of each entry in `tokens`
|
||||
*
|
||||
* @param {Array} tokens Normalized word array
|
||||
* @return {Object}
|
||||
*/
|
||||
Naivebayes.prototype.frequencyTable = function (tokens) {
|
||||
var frequencyTable = Object.create(null)
|
||||
|
||||
tokens.forEach(function (token) {
|
||||
if (!frequencyTable[token])
|
||||
frequencyTable[token] = 1
|
||||
else
|
||||
frequencyTable[token]++
|
||||
})
|
||||
|
||||
return frequencyTable
|
||||
}
|
||||
|
||||
/**
|
||||
* Dump the classifier's state as a JSON string.
|
||||
* @return {String} Representation of the classifier.
|
||||
*/
|
||||
Naivebayes.prototype.toJson = function () {
|
||||
var state = {}
|
||||
var self = this
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
state[k] = self[k]
|
||||
})
|
||||
|
||||
var jsonStr = JSON.stringify(state)
|
||||
|
||||
return jsonStr
|
||||
}
|
||||
|
||||
// (original method)
|
||||
Naivebayes.prototype.export = function () {
|
||||
var state = {}
|
||||
var self = this
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
state[k] = self[k]
|
||||
})
|
||||
|
||||
return state
|
||||
}
|
||||
|
||||
module.exports.import = function (data) {
|
||||
var parsed = data
|
||||
|
||||
// init a new classifier
|
||||
var classifier = new Naivebayes()
|
||||
|
||||
// override the classifier's state
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
if (!parsed[k]) {
|
||||
throw new Error('Naivebayes.import: data is missing an expected property: `'+k+'`.')
|
||||
}
|
||||
classifier[k] = parsed[k]
|
||||
})
|
||||
|
||||
return classifier
|
||||
}
|
35
src/tools/analysis/predict-all-post-category.ts
Normal file
35
src/tools/analysis/predict-all-post-category.ts
Normal file
@@ -0,0 +1,35 @@
|
||||
import Post from '../../api/models/post';
|
||||
import Core from './core';
|
||||
|
||||
const c = new Core();
|
||||
|
||||
c.init().then(() => {
|
||||
// 全ての(人間によって証明されていない)投稿を取得
|
||||
Post.find({
|
||||
text: {
|
||||
$exists: true
|
||||
},
|
||||
is_category_verified: {
|
||||
$ne: true
|
||||
}
|
||||
}, {
|
||||
sort: {
|
||||
_id: -1
|
||||
},
|
||||
fields: {
|
||||
_id: true,
|
||||
text: true
|
||||
}
|
||||
}).then(posts => {
|
||||
posts.forEach(post => {
|
||||
console.log(`predicting... ${post._id}`);
|
||||
const category = c.predict(post.text);
|
||||
|
||||
Post.update({ _id: post._id }, {
|
||||
$set: {
|
||||
category: category
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
45
src/tools/analysis/predict-user-interst.ts
Normal file
45
src/tools/analysis/predict-user-interst.ts
Normal file
@@ -0,0 +1,45 @@
|
||||
import Post from '../../api/models/post';
|
||||
import User from '../../api/models/user';
|
||||
|
||||
export async function predictOne(id) {
|
||||
console.log(`predict interest of ${id} ...`);
|
||||
|
||||
// TODO: repostなども含める
|
||||
const recentPosts = await Post.find({
|
||||
user_id: id,
|
||||
category: {
|
||||
$exists: true
|
||||
}
|
||||
}, {
|
||||
sort: {
|
||||
_id: -1
|
||||
},
|
||||
limit: 1000,
|
||||
fields: {
|
||||
_id: false,
|
||||
category: true
|
||||
}
|
||||
});
|
||||
|
||||
const categories = {};
|
||||
|
||||
recentPosts.forEach(post => {
|
||||
if (categories[post.category]) {
|
||||
categories[post.category]++;
|
||||
} else {
|
||||
categories[post.category] = 1;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
export async function predictAll() {
|
||||
const allUsers = await User.find({}, {
|
||||
fields: {
|
||||
_id: true
|
||||
}
|
||||
});
|
||||
|
||||
allUsers.forEach(user => {
|
||||
predictOne(user._id);
|
||||
});
|
||||
}
|
Reference in New Issue
Block a user